迈克尔·伍尔德里奇(Michael Wooldridge)是国际人工智能学界领军人物,现任牛津大学计算机学院院长,投身人工智能研究30余年。曾担任2015年-2017年国际人工智能联合会议(IJCAI)主席(该会议是人工智能界顶级会议之一),2020年获颁英国计算机领域至高荣誉——洛芙莱斯奖章,被誉为英国计算机领域具有重要影响力的三位学者之一。 ChatGPT并不是构建AGI的答案
在ChatGPT出现之前多数人认为通用人工智能非常遥远,2018年出版的一本名为《智能架构》的书中,对23位AI领域专家进行了调研,在回答“哪一年能够有50%的机会实现通用人工智能”时,谷歌工程总监Ray Kurzweil认为是2029年,而iRobot联合创始人Rodney Brooks给出的时间则是2200年。所有回答了这个问题的18位专家预测的平均时间点是2099年。
不过Elon Musk在2022年也发表了关于2029年实现AGI的观点,他在Twitter中表示,“2029 feels like a pivotal year. I'd be surprised if we don't have AGI by then.(感觉2029年是关键的一年。如果那时我们还没有AGI,我会很惊讶)”
对此,知名AI学者Gary Marcus提出了五个检验 AGI 是否实现的标准,包括:看懂电影、读懂小说、当厨师、根据自然语言规范或通过与非专业用户的交互,可靠地便携超过10000行无bug代码,以及用自然语言编写的数学文献中任意提取证明,并将其转换为适合于符号验证的符号形式。
现在看来,ChatGPT代表的通用大模型似乎朝AGI迈出了一大步。读懂小说和看懂电影的任务,似乎指日可待了。对此,迈克尔·伍尔德里奇教授认为,目前来看,人类仍然很难在2029年实现AGI。 虎嗅:像AlphaGo一样的AI专家虽然打败了人类,但它们的能力在实际应用方面存在很大的局限性,今天的通用大模型似乎正在打破这样的局面。您对专家型AI和AGI未来的发展有怎样的看法? 迈克尔·伍尔德里奇:“符号人工智能”是早期人工智能的一种模式,即假设“智能”是一个关于“知识”的问题,如果你想要一个智能系统,只需要给它足够多的知识就可以了。
这种模式相当于对人对“思维”进行建模,主导了从二十世纪五十年代到八十年代末的人工智能发展,并最终演变成了“专家系统”。如果你想让人工智能系统做一件事,比如将英语翻译成中文,你需要先掌握人类翻译家的专业知识,再使用编程语言,将这些知识传递给计算机。
这种方法存在很大的局限性,他不能解决与“感知”相关的问题。感知是指你理解周围世界、解释周围事物的能力。比如,我现在正看着电脑屏幕,我旁边有一个书架,有一盏灯。我的人类智能可以理解这些事物、环境,也可以把它们描述出来。但是,让计算机进行这个过程非常困难。这就是符号人工智能的局限,它在知识积累型的问题上表现良好,但在理解问题上表现不佳。